Analysis of the Quasi-Monte Carlo Integration of the Rendering Equation

نویسندگان

  • László Szirmay-Kalos
  • Werner Purgathofer
چکیده

Quasi-Monte Carlo integration is said to be better than Monte-Carlo integration since its error bound can be in the order of O(N (1 )) instead of the O(N 0:5) probabilistic bound of classical Monte-Carlo integration if the integrand has finite variation. However, since in computer graphics the integrand of the rendering equation is usually discontinuous and thus has infinite variation, the superiority of quasi-Monte Carlo integration has not been theoretically justified. This paper examines the integration of discontinuous functions using both theoretical arguments and simulations and explains what kind of improvements can be expected from the quasi-Monte Carlo techniques in computer graphics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi-Monte Carlo Global Light Tracing with Infinite Number of Rays

The paper presents an efficient method to solve the general rendering equation, using a combined finite element and quasi-random walk approach. Applying finite element techniques, the surfaces are decomposed into planar patches that are assumed to have position independent, but not direction independent (that is non-diffuse) radiance. The direction dependent radiance function is then computed b...

متن کامل

Importance driven quasi-random walk solution of the rendering equation

This paper presents a new method that combines quasi-Monte Carlo quadrature with importance sampling to solve the general rendering equation efficiently. Since classical importance sampling has been proposed for Monte-Carlo integration, first an appropriate formulation is elaborated for deterministic sample sets used in quasi-Monte Carlo methods. This formulation is based on integration by vari...

متن کامل

Global ray-bundle tracing with infinite number of rays

The paper presents a combined nite element and quasi-random walk method to solve the general rendering equation. Applying nite element techniques, the surfaces are decomposed into planar patches that are assumed to have position independent , but not direction independent (that is non-diiuse) radiance. The direction dependent radiance function is then computed by quasi-random walk. Since quasi-...

متن کامل

Quasi - Monte Carlo Methods in Computer Graphics

The problem of global illumination in computer graphics is described by a Fredholm integral equation of the second kind. Due to the complexity of this equation, Monte Carlo methods provide an efficient tool for the estimation of the solution. A new approach, using quasi-Monte Carlo integration, is introduced and compared to Monte Carlo integration. We discuss some theoretical aspects and give n...

متن کامل

Parallel Monte Carlo Approach for Integration of the Rendering Equation

This paper is addressed to the numerical solving of the rendering equation in realistic image creation. The rendering equation is integral equation describing the light propagation in a scene accordingly to a given illumination model. The used illumination model determines the kernel of the equation under consideration. Nowadays, widely used are the Monte Carlo methods for solving the rendering...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998